

RTO-MP-IST-042 11 - 1

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

The Utility of Open Source Software in Military Systems

Agustín Izquierdo Esperón, José Prieto Muñoz
GMV, S.A.

C/Isaac Newton 11, PTM, Tres Cantos, 28760 Madrid, Spain

aizquierdo@gmv.es jprieto@gmv.es

Jean Michel Tanneau
THALES R&T

L’Orée de Corbeville, BP 56, 91401, Orsay, France

jean-michel.tanneau@thalesgroup.com

ABSTRACT

The MILOS (Military Systems based on Open-source Software) project was a European research program
in the Eurofinder framework, attached to the CEPA 6 and co-financed by the Ministry of Defence of
France and Spain. The companies involved were THALES and GMV.

The MILOS project aimed to demonstrate benefits of Open Source Software in large software based
military systems, by casting off constraints inherent to traditional proprietary COTS and by taking
advantage of new opportunities, which occur thanks to OSS’s characteristics.

The goal of MILOS was to analyse the feasibility of the use of Open Source software in military systems.
This paper is a brief introduction to Open Source and its possible eventual relationship with both
government and military agencies.

1. INTRODUCTION

2. WHAT IS OPEN SOURCE SOFTWARE

A simple definition of ‘open source’ software, sometimes referred to as ‘free’ or ‘libre software’, is that
the software’s source code is available to the public. However, simply making the source code available
does not necessarily mean that a program meets the definition of open source software. In order to classify
a program as open source software, its license must comply with some criteria. These criteria, designed to
represent the consensus view on just what open source software is, are the following:

• Source code

The program must include the source code, and must allow distribution in source code as well as in
compiled form. Where some form of a product is not distributed with source code, there must be a
well-publicised means of downloading the source code, without charge, via the Internet. Deliberately
obfuscated source code is not allowed. Intermediate forms such as the output of a pre-processor or
translator are not allowed.

Paper presented at the RTO IST Symposium on “Coalition C4ISR Architectures and Information Exchange Capabilities”,
held in The Hague, The Netherlands, 27-28 September 2004, and published in RTO-MP-IST-042.

mailto:aizquierdo@gmv.es jprieto@gmv.es
mailto:jean-michel.tanneau@thalesgroup.com

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 DEC 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
The Utility of Open Source Software in Military Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
GMV, S.A. C/Isaac Newton 11, PTM, Tres Cantos, 28760 Madrid, Spain

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM202135, RTO-MP-IST-042. Coalition C4ISR Architectures and Information Exchange
Capabilities (Les architectures C4ISR et les capacites d’echange d’information en coalition)., The original
document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

30

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The Utility of Open Source Software in Military Systems

11 - 2 RTO-MP-IST-042

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

• Integrity of the author’s source code

It is strongly recommended that “none of the authors restrict any files, source or binary, from being
modified”. The license must explicitly permit distribution of software built from modified source
code. The license may require derived works to have a different name or version number from the
original software.

• Derivative works

The license must allow modifications and derived works and must allow them to be distributed under
the same terms of the license of the original software.

• ‘Free’ redistribution

The license may not restrict any party from giving away (or selling) the software.

So, ‘closed source’ or ‘proprietary’ software is defined as software that does not meet the criteria stated
above. For example, with closed/proprietary software, a typical user is neither allowed to access to the
source code nor to modify the source code, and is usually prohibited from redistributing the software.
Virtually every type of open source software has some variant of an open source software license
associated with it. In fact, the use of open source licensing is an essential element in making open source
program ‘open source.’

One should also note that, when the word ‘free’ is used, it does not necessarily mean the same thing as
‘zero price‘ ‘free’, in relation to open source software, means ‘freedom’ from constraints.

3. SUMMARY OF WORKS AND OUTPUTS OF THE MILOS PROJECT

The first stream of the performed work was to identify and to analyse stakes of OSS within software based
military systems. Then to propose an organisation that enables to benefit from OSS while reducing its
related risks. Such analysis and proposals, which followed, have been carried on by comparison with the
COTS approach.

The second stream of the work was devoted to apply those findings to the development of an OSS based
demonstrator.

These two streams were strongly connected, the first one providing guidelines and process to the second
one which, in return has provided fruitful feedback to tune and adapt findings of the theoretical approach.

The first phase dealing with the theoretical study started with the compilation of the requirements of the
client/supplier chain, where the OSS world was first understood, with its actors and their motivations. An
explanation of how particularities and qualities of OSS components lead to opportunities for the system
was given: right features, maintainability, tailoring, favourable licensing and pricing, standard respects,
market share (de facto standard), quality/reliability, performance, security, total cost of ownership,
scalability. Special attention was paid to how some of these characteristics (mainly adherence to standards
and licensing schema) should help to the long-term maintenance issue of military systems (compared to a
COTS based solution).

However, three characteristics of OSS were pointed out, which although bringing opportunities, introduce
threats for the system: its licensing schema, to be an “external component” and to be in “continuous

The Utility of Open Source Software in Military Systems

RTO-MP-IST-042 11 - 3

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

evolution”. A dedicated OSS “evaluation / selection process” and emphasis on “Configuration
management” should dramatically mitigate related risks while enabling to fully benefit from OSS. These
issues, solutions and related organisational changes are highlighted in the following section of this paper.

As the proposed change to the evaluation/selection process was innovative, it was tested in the context of
the development of the “Milos demonstrator”. The scope of the development was first refined through a
technical requirements specification, where requirements related to the development infrastructure and to
the targeted application domain (functional subset of a Command and Control Information System) were
highlighted.

Based on the list of product segments as identified in the technical requirements specification, a general
OSS market survey was provided. It was used as input to the evaluation of candidates for each segment
relevant to the demonstrator, evaluation results were in a Requirements compliance and trade-off report.

The selection and evaluation process dealt with both:

• Technical topics, which are different for each family of tools. Every tool must be compliant to
some technical criteria.

• Industrial topics, concerning support, sponsors, documentation… For Open Source, industrial
topics play an important role in order to limit risks.

Information for both parts is collected, beginning with the technical topics. Since the list of tools in the
market survey report were, more or less, in compliance with the technical criteria (technical requirements
specification), all of them were “industrially” investigated.

In both cases, a set of criteria were collected and weighted (regards the relative significance). Later those
were used to qualify the tools.

Selection of the components to be integrated in the demonstrator followed results of the evaluation phase
with a few of exceptions, which took care of a set of constraints defined for the demonstrator.

A test scenario was released to functionally validate the demonstrator and therefore the suitability of OSS
for military systems development. It was also validated through a previously defined validation plan.

To conclude this theoretical work, relationships between the different actors were studied: the OSS
community, the technology provider (OSS support provider), the systems’ integrator and the customer.
This study was done from the business points of view of the technology provider and the integrator roles.

The second phase of the project, the practical application, started with the installation of the selected OSS
components with special care to compatibility (interoperability). Then came the “glueing” of the OSS
components together with specific developments according to specifications previously drafted. After unit
testing and final integration, the demonstrator was evaluated through the operational and the technical
scenario previously defined.

4. THE EVALUATION PROCESS

The evaluation is twofold: the technical evaluation (in order to assess technical capacity) and the industrial
evaluation (in order to assess confidence in mid-term).

But, prior to any kind of evaluation of an OSS candidate, its licensing schema is an issue that should be
taken into account through a legal analysis. According to how the OSS component is used in the system,

The Utility of Open Source Software in Military Systems

11 - 4 RTO-MP-IST-042

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

some licensing schema may impose the redistribution of part (or even the entire) system under the same
license of the OSS component (such license is called “viral” – e.g. the GNU GPL). In such a situation, the
system’s integrator ‘s intellectual property rights related to those “OSS license-affected” part are altered,
he is not allowed to release this part of the system which uses the OSS in a proprietary system.
Consequently, the legal analysis step is going to act as a first level filter to eliminate those components
whose license doesn’t comply with the intellectual property right strategy of the integrator for the
considered system.

The technical evaluation process can be depicted as follows: for each segment of products under
consideration, a list of technical criteria (featuring technical capacity and functionality expected for
candidates in the segment to be fulfilled) is defined with accurate metrics (how to measure). The criteria
are “weighted” to feature their relative importance and to take into account the context of the evaluation
(or targeted systems - in Milos, weights were set-up with the command and control information system
context in mind). To allow comparison between candidates the valuation of criteria is normalised as well
as weights.

Even after having checked the accuracy of a component to the system‘s technical requirements, the
decision to use such “external component” is always a critical one, since it creates a dependency link
between the system (which is responsibility of the integrators) and this component (which is responsibility
of its provider). The objective of the “industrial” evaluation process is to assess and mitigate risks related
to this kind of “dependency link” in a mid-term horizon (3 to 5 years; a longer period is meaningless in the
rapidly moving software world).

For the industrial evaluation, a way to gain or assess the confidence in an OSS through an investigation of
the project life was proposed. The points studied were: its lead maintainers, its developers and
communities of users, the usefulness and reactivity of supporting information media (mailing lists,
forums), consistency and accuracy of information released by the project (roadmaps, vision), the support
of major software / computer industries.

As a conclusion, both the OSS evaluation process and its outputs were considered as major results of
Milos, and it was our intend to share such information and to establish co-operation with other industrials,
which share the same concerns (i.e. which look for integration of OSS in systems having a long-term
maintenance constraint).

• When running the evaluation process, we have investigated more than 40 segments (families of
products) covering 330 OSS. The effort needed to run the investigation was high, especially for
the industrial-like investigation for which we have simplified the criteria. As a future direction, it
could be worth to automate part of this investigation (e.g. to look for utilities that compute some
criteria as: the average number of mails per day/month, the mean time between question and
answer, growth of traffic, growth of the community, identification of main people that answered
questions).

• The investigation output was a snapshot of the OSS market at the time the study was done, to
keep alive such information we have proposed to release it to the public with the aim at federating
users and experts communities through a dedicated portal. We’ve passed information to the eCots
portal (www.ecots.org, software components open directory project) which provides products
segmentation and facilities to host a community.

The Utility of Open Source Software in Military Systems

RTO-MP-IST-042 11 - 5

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

5. THE CONFIGURATION MANAGEMENT

One major point with OSS is its frequent releasing policy, which allows integrating rapidly bugs fixing
and enhancements; this is also considered as a crucial feature to keep active the developers and users
community.

On the other hand, system’s integrators need to freeze all components that are part of the system for a
period of time that is compatible with development constraints (integration of external components with
the developed applications). Between keeping in touch with the latest edge of the project and stability, a
trade-off needs to be taken.

Stability is needed for either the development phase of the systems but also to enable corporate
capitalisation of know-how related to those components.

5.1 Stability and the system context

Freezing OSS components doesn’t mean that it is no more possible to integrate some corrective patches;
the decision to do so depends on the issues the patches correct (e.g. blocking bugs or security holes). It
should also be noted that some corrections lead to a new version of the component; this is under the
responsibility of the OSS lead maintainer, who decides depending on the severity.

In addition, the integrator may have modified the current version of the OSS to adapt it to the system’s
specificity; it is highly recommended that such modifications are tracked through patch mechanisms in
order to stay compatible with what is done by the community.

Where there is no dedicated organisational entity to manage the OSS (see below), it’s responsibility of the
system’s team to manage versions of the component, its patches as released by the community, its patches
as released internally to cope with contextual adaptation and, all the related documentation. This is
mandatory to be able to rebuild at any time the actual version of the component that is in use in the system
and will make easier, further replacement of this component.

Such a version management of OSS is then integrated in the system configuration management to provide
the full figure of what has been used and integrated.

5.2 Stability and the organisational context
According to the frequency of usage of a component within a system, a dedicated unit should be defined in
the integrator’s organisation. This unit will take charge of supplying, adapting (internal patches), releasing
to businesses and deciding updates policy (when and which version of the OSS component to use, whether
to apply patches as released by the community or not). This entity will act as interface between the
systems development teams and the OSS communities; they may also provide some kind of support to
their internal customers. In such a case this entity will manage the actual versions of components as
released to systems developers (i.e. the OSS and subsequent patches that may have been applied to build
the “internal reference” released to systems developers).

Systems development teams should use this customised version of the OSS as its reference and may adapt
it to systems constraints if needed (contextual patches).

The Utility of Open Source Software in Military Systems

11 - 6 RTO-MP-IST-042

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

6. USE AND INTEGRATION OF OSS (THE TECHNICAL VIEW)

It was not the aim of the project to build a full-fledged operational system. Nevertheless the development
of the Milos demonstrator allowed to point out some issues and to verify some advantages of OSS.

A summary of this phase, which emphasises key points related, could be the following:

• The Framework installation

Before installation was broached, an installation manual for each OSS tool to be use was prepared. It
greatly helped the framework installation.

No real difficulty was encountered in the operating system installation (made in dual-boot with
Windows) but it requires standard skills in Unix administration. Concerning tools, a choice had to be
made between RPM or source installation. The second option was preferred, since it is considered
better for the system mastering.

A set of tools had a really straightforward installation process (17 out of 28), some only needed
configuration (9) and only two were really difficult to install. On tool (Subversion) had to be changed
since it did not fulfil our needs, but this tool was not a final release (not mature enough). Mailing lists
were of great help during the process.

The main conclusion was that installing the framework was quite easy except for a few tools. It was
even easier since many tools were Java-based. Windows users may however have difficulties to find
operating system configuration tools since it requires some skills in Unix administration and since they
are less integrated. The counterpart is that flexibility in configuration was proved to be really good.

• The components integration

Main difficulties encountered concerned tools versions mismatch management, since many low-level
tools are widely integrated in higher level tools, leading to large sets of dependencies. Moreover, each
tool needs some prerequisite knowledge to be gathered (integrator experience).

A first phase during which a coherent set of tools, or even tools versions, is identified seemed
necessary. All the development tools selected proved to integrate well.

Security aspects were however not considered for the demonstrator and this may lead to difficulties in
a scope where tools from very different places are gathered. Anyway, this should be investigated
deeper.

• Specific development

Some tools do not come with sufficient documentation (our opinion). The main source for developers
support used was mailing lists. It has to be noticed that many questions were already answered for
other developers and did not require posting a request. Even beginner’s questions are answered.

Concerning development tools, Eclipse was of great help and was robust, powerful, portable and
extensible (through plug-ins). Its main drawback is a huge need in resources (memory, CPU).

We consider that OSS software used did not bring difficulties in designing the architecture we planed.
Some purely technical difficulties arose, in particular with xsl:fo, which is hard to write and maintain.

We globally consider that the tools selected for development provided good productivity and allowed
us to build all the elements we planned.

The Utility of Open Source Software in Military Systems

RTO-MP-IST-042 11 - 7

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Performance could be improved, at the cost of an in-deep evaluation of where time is consumed,
which was only partly done during the demonstrator test phase, for it corresponds to an important
effort.

• Impact on design

Related to impact on the systems design of the introducing of OSS, there is few to say, which is
specific to OSS. The major point to take care of, is the fact that it is an “external component” which
therefore should be clearly isolated from the rest of the system (e.g. through wrapping techniques) if
its API is not standardised; this for the sake of robustness and maintainability.

• Main differences compared to COTS

The main differences noticed were:

• source code availability

• the lack of tools for system design (UML tools, GUI builder)

• a good versioning system (CVS) but restricted to small to medium teams (no connection to a
bug tracking system)

• the way to obtain support, which is really different from COTS but efficient for standard
development (maybe not for expert modifications).

The office tool (OpenOffice) was judged powerful and easy to use, but it still has the following
“drawbacks” (not technical):

• different interface for Windows users which requires adaptation time

• some interoperability loss with usual office tools.

• Future directions

Future directions could concern performance and security aspects.

Also, the following services could be considered:

• directory services

• adaptable deployment

• system configuration and management

• formal electronic mail management

A more ambitious task could consist in defining a complete runtime and development platform, taking
requirements of a real system into account, mixing COTS and OSS based on the requirements for each
service.

7. CONCLUSIONS

Besides technical considerations, the introduction of OSS is a change that mainly affects the way
integrators use to work with COTS; as such, it should be managed within a project by:

• taking care of “brake” factors

• analysing new opportunities and threats of the change

The Utility of Open Source Software in Military Systems

11 - 8 RTO-MP-IST-042

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

• bringing out limitations of previous way of doing as well as regulations that had been defined to
deal with those limitations

• proposing changes that take care of the two previous points and, gaining high management
implication

• conducting (leadership, information and/or training sessions) and crystallising the change through
new procedures and organisations.

28/09/2004

www.gmv.es

The utility of Open The utility of Open
Source software in Source software in
military systemsmilitary systems

PTMPTM

C/ Isaac Newton nC/ Isaac Newton nºº 1111

TRES CANTOSTRES CANTOS

EE--28760 MADRID (Spain)28760 MADRID (Spain)

Telephone: 91Telephone: 91--807 21 00807 21 00

Fax: 91Fax: 91--807 21 99807 21 99

http://www.http://www.gmvgmv..eses

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Objective

« to analyze all the issues raised by the use of Open
Source Software in military systems … with focus

on OSS running on Linux »

A study:
Competitive approach : « COTS Based Systems Vs.
OSS Based Systems »
Risk Engineering approach : risk reduction +
opportunity increase

A Show Case : demonstrator in the defense domain
Strong interaction between both : loop

Introduction

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Open Source software definition

OSSW isn’t just access to the source code...

Free redistribution: no restrictions
Source code: accessibility
Derived works: modifications are allowed
Integrity of the author’s source code:

no “modified distribution” if patch files are allowed
explicitly permit distribution of SW built from modified
source code
version number of the original SW

No discrimination against persons or groups
No discrimination against fields of endeavour (this
includes military purposes)

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

OSSW isn’t just access to the source code...

Distribution of license: rights attached to the program
apply to all to whom the program is distributed.
License must not be specific to a product: no
dependence on the program being part of a certain
distribution (part of the whole)
The license must no restrict other software

Open Source software definition

28/09/2004

www.gmv.es

Summary of works Summary of works
performedperformed

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

How to investigate an OSS project life

Emergence
•Initial objective
•Initiators
•Origin of the project
•Positioning
•1st stable release

Taking-off
•Major events
•Successive stable releases

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

How to investigate an OSS project life

Maturity
Understanding
•Current model of development
•Developers community
•Positioning
•Adherence to standards
•Licensing scheme
Support
•Mailing lists
•FAQ
•Forums
•Commercial companies ? costs ?
Acceptance
•Echo in the press
•Related web sites
•Industrials supporting the development
•Number of users
•Institutional & industrials users
Future
•Roadmaps

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

List of investigated segments of software

ORBs
MOMs
Security
Application Servers
JVM
IDES
XML tools
Data conversion tools
XML middleware
Databases
Persistency tools
Loose integration tools
Management tools
GUI building tools
GroupWare
Mail servers
Compilers

Text editors
Bug tracking tools
Desktop
Source Browsers
Database graphical design
GUI testing tools
Software testing tools
Deployment tools
Requirements management
UML modular tools
Configuration management
Performance measurement
HMI and presentation tools
Portable Communication tools
Remote administration tools
Documentation tools
Real-time operating systems

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Outputs of the market survey

Collected information

Taking off
Maturity of the project

Frequency of releases
Mailing lists
Stable/unstable branches
Number of users
Number of developers
Industrials support

Support for the user/developer
General documentation of the tool

User’s manual
Installation manual
FAQs
Features

Technical criteria regards each set of tools

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Outputs of the market survey

General conclusions

Some branches are not covered by the OS
community
Some OS segments are not at the same level as
COTS counterpart
Sometimes, conservative policy
Quick evolution
Excellent support
Niches
Also, a weighted punctuation (both technical and
industrial) was obtained for each tool.

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Demonstrator overview

DEMONSTRATOR GOALS
Illustrate Open-Source suitability for developing and
running a military application
Taking CCIS systems as a guiding example
Scenarios were defined and fulfilled

HYPOTHESIS
Tools selection for the demonstrator will be picked from
the market survey and requirements compliance
outputs.
Linux is the target platform

Solutions respecting widely adopted standards should
were preferred
The Java language should were preferred when possible

Linux is the target platform

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Demonstrator overview

Web Clients

XML doc
over MOM

RMI/IIOP

Open source
Web server

Open Source
Servlet Engine

Open source
XSLT engine

Open source
DBMS

Military
Model

Open source
Application Server

J
D
B
C

XML doc

Office
Applications

Tactical Editor
Java Client

XML Interfaced
Application

Présentation Tier Data TierBusiness Tier

Interfaces

Schema

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Demonstrator overview

Functional breakdown

Third PartyThird Party

Interoperating Application
stub

Interoperating Application
stub

Dynamic Tracks SimulatorDynamic Tracks Simulator

ClientClient

Document editingDocument editingTactical EditorTactical Editor

Web BrowsingWeb Browsing

MailingMailing Dynamic Tracks
Performance Display

Dynamic Tracks
Performance Display

ServerServer

Application ServerApplication Server

Data Access/Modification/QueryData Access/Modification/Query

Mail ManagementMail Management Data StorageData Storage

XML Import/Export

Application Integration Support

Office Document Export

Web data access

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Demonstrator overview

Tactical editor layout

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Demonstrator overview

Demonstrator definition

J2EE Application Server

Data Storage
(RDBMS)

W
eb Server

Servlet Engine

XSLT Engine

XML Engine

Data/XML Engine

Presentation Business Data

Tactical Editor

O
ffice D

ocum
ent E

xport

XM
L Im

port/Export

Application Integration
Support

Interoperable
Application stub

Cartographic Toolkit

Mail Client

Office Suite

Web Browser

JVM

JVM

Third Party Applications

Mail Server

Data
Access/Modif/Query

XML
Data Files

JMS MOM

JVM

Demonstrator
Web Site

Dynamic Tracks
Simulator

Cartographic
background

files

Dynamic Tracks
Performance Display

Predefined
XML

Data Files

Tracks
Scenario

W
eb D

ata Access

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Demonstrator overview

System architecture

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Demonstrator results

COTS vs OSS

Source code availability
helps understanding and integrating with the tools
reading OSS source code is a good way to improve
developers skills for it is often well designed and
documented

Design
no UML tool used for none of them proved to be good
enough in the market survey and since COTS are
expensive
no GUI builder used since developed HMIs are very
specific

Versioning
CVS really well adapted for small to medium
development teams, however it lacks a connection to
a bug tracking system
Versioning OSS libraries is tricky as already mentioned
(mismatches, update difficulties)

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Demonstrator results

COTS vs OSS

Support
no hotline
mailing-lists very efficient for day-to-day
development, probably less for expert modifications
requirements

Office Tools
Easy and Friendly
But use a different look&feel and break some
compatibility for exchanging documents with users of
Windows Office Tools.

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Demonstrator results

Specific development

Some tools lack documentation (coming with the
tool itself)

mailing-lists proved to be helpful
questions already answered for other developers
even newbie questions answered

The Eclipse IDE helped a lot
Robust, powerful, portable and extensible
However requires huge resources (memory and CPU)

Using OSS software
did not put any particular obstacle in developing the
planned architecture and features
same kinds of solution as for COTS were used
allowed good productivity

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Conclusions

Specific development

MILOS was a success
Added-value of outputs
Vision of the future

Thanks to strong correlation of issues addressed
in MILOS and companies’ strategic vision
MILOS : a contribution to pave the way for a
spreading usage of, and deeper implication in, Open
Source Software

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Conclusions

Main achievements

MILOS was a success Accuracy of our Project
development methodology.

Competitive SWOT analysis (OSS Versus proprietary
COTS)

OSS dedicated “Evaluation / Selection” process
Run on a wide scope: 350 OSS through 45 products’
segments
Gave positive results (see Technical feedback)

Organisational level
Importance on dedicated structure (legal issues,
capitalisation …)
Importance on strong configuration management

Usage and integration of many OSS
Development environment & Target system
Get support from community
Technical skill

28/09/2004
NATO unclassified

w
w

w
.g

m
v.

es

Questions

Question time

	MP-IST-042-11
	MP-IST-042-11
	The utility of Open Source software in military systems
	Introduction
	Open Source software definition
	Open Source software definition
	Summary of works performed
	How to investigate an OSS project life
	How to investigate an OSS project life
	List of investigated segments of software
	Outputs of the market survey
	Outputs of the market survey
	Demonstrator overview
	Demonstrator overview
	Demonstrator overview
	Demonstrator overview
	Demonstrator overview
	Demonstrator overview
	Demonstrator results
	Demonstrator results
	Demonstrator results
	Conclusions
	Conclusions
	Questions

	MP-IST-042-11
	MP-IST-042-11
	The utility of Open Source software in military systems
	Introduction
	Open Source software definition
	Open Source software definition
	Summary of works performed
	How to investigate an OSS project life
	How to investigate an OSS project life
	List of investigated segments of software
	Outputs of the market survey
	Outputs of the market survey
	Demonstrator overview
	Demonstrator overview
	Demonstrator overview
	Demonstrator overview
	Demonstrator overview
	Demonstrator overview
	Demonstrator results
	Demonstrator results
	Demonstrator results
	Conclusions
	Conclusions
	Questions

